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Abstract

1. As an increasingly important resource in ecological research, citizen scientists

have proven dynamic and cost-effective in the supply of data for use within

habitat suitability models. With predictions critical to the provision of effective

conservation measures in cryptic marine species, this study delivers baseline

ecological data for the Critically Endangered angelshark (Squatina squatina),

exploring: (i) seasonal, sex-differentiated distributions; (ii) environmental

distribution predictors; and (iii) examining bias-corrected, imperfect citizen

science data for use in coastal habitat suitability models with cryptic species.

2. Citizen science presence data, comprising over 60,000 hours of sampling effort,

were used alongside carefully selected open-source predictor variables, with

MAXENT generating seasonal male and female habitat suitability models for

angelsharks in the Canary Islands. A biased prior method was used, alongside two

model validation measures to ensure reliability.

3. Citizen science data used within MAXENT suggest that angelshark habitat suitability

is low in coastal areas during warmer months, with fewer occurrences despite a

negligible change in sampling effort. The prime importance of bathymetry may

indicate the importance of depth for reproductive activity and possible diel

vertical migration, whereas aspect may act as a proxy for sheltered habitats away

from open ocean. Substrate as a predictor of female habitats in spring and

summer could imply that soft sediment is sought for birthing areas, assisting in

the identification of areas critical to reproductive activity and thus locations that

may benefit from spatial protections.

4. Model outputs to inform recovery plan development and ecotourism are

identified as plausible safeguards of population recovery, whereas the comparison

of biased and bias-corrected models highlights some variance between

methodologies, with bias-corrected models producing greater areas of habitat

suitability. Accordingly, an adaptive framework is provided for the implementation

of citizen science data within the modelling of cryptic coastal species distribution.
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1 | INTRODUCTION

The provision of spatial protection may help the recovery of

threatened species, contingent on their life history. By identifying

and prioritizing critical habitats and migratory patterns, the

pressures exerted by anthropogenic stressors can be mitigated and

conservation efforts refocused to target the overarching protection

needed for the recovery of species (Stirling et al., 2016). Yet, the

challenges associated with the protection of Data Deficient and

rare species can be prohibitive, with efforts and costs further

increasing for cryptic or nocturnal species and for species

inaccessible to scientific monitoring (Huveneers et al., 2009;

Stratmann, Barrett & Floyd, 2016). Citizen science may provide a

viable solution to these challenges, with opportunistic data

collection able to contribute valuable information on distribution

and abundance, where traditional methods are either not feasible

or not resourced under existing monitoring programmes (Tiago,

Pereira & Capinha, 2017).

The use of citizen science data has already proven instrumental

to policy changes relating to the distribution of rare and threatened

species (see Hyder et al., 2015), and is predicted to become ever more

important in future decision making. Enhancing public participation

and engagement throughout the marine spatial planning process,

citizen science provides a viable and efficient method of coastal data

collection where full scientific monitoring may be unfeasible, thereby

delivering community benefits and a cost-effective use of research

funding (Hyder et al., 2015; Jarvis et al., 2015; Bradsworth

et al., 2017; Coxen et al., 2017; Tiago, Pereira & Capinha, 2017). With

over 27 million scuba diver certifications issued globally since 1967

(PADI, 2019), the public represents a huge, untapped resource for

marine citizen science initiatives that, when effectively managed, may

contribute important data to inform research and monitoring

initiatives for rare and invasive species, climate change, marine

protected areas, and fish conservation (Arin & Kramer, 2002; Ditton

et al., 2002; Rudd & Tupper, 2002). For example, the Seasearch

initiative (http://www.seasearch.org.uk), a citizen science project

gathering data on marine species and habitats in the UK and Ireland,

has been used by government bodies to promote Marine

Conservation Zones and identify priority species for conservation

(Seasearch, 2013; see Hyder et al., 2015), corroborating the value of

non-specialist data collectors.

Yet, despite the provision of many advantages, the use of citizen

science is not without its limitations: data quality has proven a major

constraint, particularly regarding imperfect detection, a pertinent

concern for cryptic, nocturnal species like the angelshark (Squatina

squatina) (Mengersen et al., 2017; Dwyer et al., 2019). Likewise, dive-

specific limitations can include weather conditions, dive site, depth,

accessibility, turbidity, and the avoidance of areas such as pollution

points (Reddy & Dávalos, 2003; Schmeller et al., 2009; Botts, Erasmus

& Alexander, 2011; Hassall, 2012).

On the contrary, a critical assumption of presence-only

distribution modelling is that data are derived from systematic

random sampling, with a complete lack of bias (Phillips et al., 2009;

Kramer-Schadt et al., 2013). This is very rarely the case yet can be of

amplified concern with citizen science datasets, where imperfect

geographic sampling can yield model predictions with increased

instances of over- or under-predicting habitat suitability (Kramer-

Schadt et al., 2013). Thus, habitat suitability model (HSM)-specific

studies have advocated the use of bias files to represent the relative

sampling intensity across the study area. Although never able to fully

counteract biases created during data collection, this method has

produced better corrections than alternative measures, and with

enhanced predictive performance, particularly in presence-only

models with limited data (Elith et al., 2011).

With suspected declines of ≥80% within three generations, the

angelshark is listed as Critically Endangered on the International

Union for Conservation of Nature (IUCN) Red List of threatened

species (Morey et al., 2019). The Canary Islands have been identified

as a unique stronghold for angelsharks (Barker et al., 2016; Jiménez-

Alvarado et al., 2020), but here the species is under threat from

accidental by-catch (Barker et al., 2016), with habitat degradation,

pollution, and human disturbance identified as other potential threats

in the Canary Islands. Hence, baseline ecological data for the

angelshark are urgently required for ensuring appropriate

conservation and management actions (Barker et al., 2016). With an

understanding of species distribution being critical to this aim, HSMs

have become integral in expanding our knowledge of data-poor and

cryptic species (Huveneers et al., 2009; Aguirre-Gutiérrez et al., 2013;

Araujo et al., 2017; Meyers et al., 2017), and provide critical

justification for marine protected area planning, material for fisheries

interactions, and as a visual tool, accessible to scientists and non-

specialists alike (Young & Carr, 2015). Moreover, a greater knowledge

of angelshark habitat requirements and movements can inform future

management decisions in the Canary Islands, following the inclusion

of angelsharks on the Spanish endangered species list under ‘in
danger of extinction’ – the highest category of protection.

Found in coastal marine waters, including estuaries and brackish

waters, the historical range for the angelshark extends from northern

Scotland and southern Scandinavia to Western Sahara and the Canary

Islands, including the Mediterranean Sea and Sea of Marmara

(Compagno, 1984; OSPAR Commission, 2010; Lawson et al., 2020).

Seasonal migrations are thought to take place within its northern

ranges, with individuals moving north as water temperatures rise in

the summer months (OSPAR Commission, 2010), although Ellis

et al. (2021) also highlight seasonal inshore–offshore migrations

occurring within the Squatinidae family. Dorsoventrally flattened and
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demersal, angelsharks typically inhabit areas of soft, benthic sediment

at depths of 0.3 to 150 m (OSPAR Commission, 2010; Meyers

et al., 2017; Morey et al., 2019). Sexual dimorphism in the angelshark

is largely defined by size, with such differences generally associated

with behavioural divergence, and varying degrees of sexual

segregation, as has been observed widely within shark populations

(Springer, 1967; Ruckstuhl & Neuhaus, 2002; Safi, König &

Kerth, 2007; van Toor, Jaberg & Safi, 2011; Munroe, Simpfendorfer &

Heupel, 2014).

There already exists evidence of spatial sex divergence within the

genus Squatina, with indications that the angelshark may also display

segregation in space by sex (Bridge, Mackay & Newton, 1998;

Awruch et al., 2008; Meyers et al., 2017). Therefore, if fishing

pressure is high in areas key to, for instance, feeding or mating

aggregations, or where subsections of the population reside

(e.g. gravid or birthing females and neonates), there is a potential for

higher rates of decline within those demographics. Thus, the

verification of sexual segregation in angelsharks could inform

conservation strategies by highlighting areas of differential

exploitation and disturbance between the sexes (Klimley, 1987; Levin

& Stunz, 2005; Mucientes et al., 2009).

This study uses imperfect citizen science occurrence data,

collected by scuba divers in coastal areas of the Canary Islands,

alongside carefully selected predictors from open-source

environmental databases to explore habitat suitability and the

potential distribution of angelsharks. The MAXENT technique is

implemented to: (i) investigate sex-differentiated, seasonal angelshark

distributions; (ii) provide an overview of angelshark distribution

predictors; and (iii) explore the use of bias-corrected imperfect citizen

science data in cryptic species HSMs. The ultimate objectives are to

provide the scientific grounds for evidence-based conservation

management decisions, focus scientific sampling efforts, and minimize

fishing mortality, whilst delivering a flexible framework for the use of

biased citizen science data within coastal HSMs for cryptic and

threatened marine species.

2 | METHODS

2.1 | Study region

The Canary Islands lie just over 100 km off the north-west coast of

Africa, in the north-east Atlantic, at approximately 28.3�N and

15.5�W. With a total land area of 7,440 km2, the volcanic archipelago

consists of eight main islands – El Hierro, La Palma, La Gomera,

Tenerife, Gran Canaria, Fuerteventura, Lanzarote, and La Graciosa

(from west to east) – and several islets. Favoured for their mild

waters, high biodiversity, and volcanic seascapes, the Canary Islands

are a popular year-round diving destination, particularly the southern

and eastern regions that are less exposed to turbulent Atlantic

conditions (PADI, 2020). Most sightings data were collected in the

easternmost islands (Figure 1), and for this reason, this study has

focused on Gran Canaria, Fuerteventura, Lanzarote, and La Graciosa.

2.2 | Data collection: citizen science

The majority of data were provided by three databases established

to compile citizen science occurrence data on angelsharks

and marine biodiversity in the Canary Islands: RedPromar (http://

www.redpromar.com/app/map/report), Programa Poseidon (http://

www.vliz.be/en/imis?dasid=6458&doiid=471), and the Angel Shark

Sightings Map, developed by the Angel Shark Project: Canary

Islands, a collaboration between, Universidad de Las Palmas de

Gran Canaria, Zoological Research Museum Alexander Koenig, and

the Zoological Society of London (http://www.angelsharkproject.

com/map). Each initiative provided an interactive map for citizen

science divers to register their sightings and log location

coordinates, alongside species information such a size, abundance,

and sex, and including dive-specific details like depth and

temperature. Sightings data were also provided by several

individuals and dive centres working with the Angel Shark Project:

Canary Islands. Data collected from March 2014 to August 2018,

inclusive, were used in this study.

Where angelshark occurrences were duplicated across multiple

databases (for example, if a citizen scientist entered the same sighting

into both RedPromar and the Angel Shark Sightings Map), data points

were condensed to one datum and the maximum relevant information

was retained for analysis. As movements can be contingent upon

ontogeny (Andrews, Williams & Levin, 2010), only occurrences

identified as adult angelsharks were retained to ensure models

represented mature individuals. Dive centres reported a minimum–

maximum diving range of between 3 and 50 m depth. To account for

potential land-based and snorkeller sightings, angelshark occurrences

registered at depths between 1 and 50 m were retained for analysis.

Based upon a thorough literature review, and long-standing

anecdotal evidence from divers in the Canary Islands, data were

divided into meteorological seasons: winter (December, January, and

February), spring (March, April, and May), summer (June, July,

and August), and autumn (September, October, and November), and

further subdivided by sex to identify sex-segregated distribution in

adult angelsharks.

An additional questionnaire was distributed to dive centres across

the archipelago (n = 34) to ascertain diver effort as a proxy for citizen

science sampling effort in order to highlight biases not immediately

obvious from the raw occurrence data. A full dive log was also

contributed by Buceo La Graciosa dive centre, La Graciosa, from

which diver effort (average number of dives per month) was derived

from three incomplete years, providing a measure of diver effort

seasonality.

2.3 | Environmental variables

Predictor variables were obtained from a variety of open-source

databases at varying resolutions, whereas a high-resolution digital

bathymetric model (DBM) was acquired from the Observatorio

Ambiental de Granadilla (see Table 1).

NOVIELLO ET AL. 3

http://www.redpromar.com/app/map/report
http://www.redpromar.com/app/map/report
http://www.vliz.be/en/imis%3Fdasid%3d6458%26doiid%3d471
http://www.vliz.be/en/imis%3Fdasid%3d6458%26doiid%3d471
http://www.angelsharkproject.com/map
http://www.angelsharkproject.com/map


All predictors were processed to ensure a common resolution of

250 m � 250 m, at depths between 1 and 50 m. ARCGIS 10.5.1 was

used for all processing, with terrain derivatives created using TERRAIN

ATTRIBUTE SELECTION FOR SPATIAL ECOLOGY 1.1 (TASSE; Lecours et al., 2017)

and BENTHIC TERRAIN MODELER 3.0 (BTM; Walbridge et al., 2018) toolboxes.

Predictors were refined from 51 potential environmental

variables to nine that were used in the final models. Predictors were

reduced to those thought to have both direct and indirect influence

on angelshark distribution and movement. Furthermore, as related

species are more likely to share ecological preferences (e.g. Wiens

et al., 2010; Losos, 2011), variables thought pertinent to

elasmobranch ecological or biological processes were also retained.

To account for potential movements in relation to the seasonal

occurrence of prey species (Byrkjedal & Høines, 2007; Lucifora,

TABLE 1 Variables used in final MAXENT models

Variable Starting resolution (m) Data collection Source

Bathymetry 2 Multibeam Observatorio Ambiental Granadilla (2016)

Easternness 250 Multibeam derived DBM derived

Substrate 250 The European Nature Information System (EUNIS)

habitat classification

EUSeaMap: EMODnet (2016)

Northernness 250 Multibeam derived DBM derived

DAmax 9,200 Satellite-based and in situ measurements Bio-Oracle (2017)

DAmin 9,200 Satellite-based and in situ measurements Bio-Oracle (2017)

RDMV 250 Multibeam derived DBM derived

SSS range 1,000 Satellite-based and in situ measurements Marspec (2013)

Mean annual SST 1,000 Satellite-based and in situ measurements Marspec (2013)

Note: Environmental variables selected for Canary Island angelshark (Squatina squatina) model inclusion, with corresponding abbreviations, spatial

resolutions, data collection method, and source.

Abbreviations: DAmax, diffuse attenuation maximum; DAmin, diffuse attenuation minimum; DBM, digital bathymetric model; RDMV, relative deviation from

the mean; SSS, sea surface salinity; SST, sea surface temperature.

F IGURE 1 Canary Island study area. Map showing the focal study area (Gran Canaria, Lanzarote, Fuerteventura, and La Graciosa) with the
location of dive sites and adult angelshark (Squatina squatina) records differentiated by sex: female (n = 408) and male (n = 243). Location and
100-m contour lines provided for reference. Coordinate system: WGS84

4 NOVIELLO ET AL.



García & Worm, 2011), likely predictors of prey species presence

were included in explanatory analyses, but the available data were not

found to be informative and so were excluded from the final model.

To maintain model simplicity and avoid overfitting, indicators of

primary productivity were included as a composite variable. As

recommended by Lecours et al. (2017), terrain attributes were derived

from the digital bathymetric model and included in the analysis. A full

list of variables considered can be found in Table S1, whereas greater

detail on variable consideration and rationale can be found in

Table S2.

Spearman’s rank correlation coefficients and significance tests

were then applied to data extracted from the remaining predictors

with 1,000 random points (Stirling et al., 2016; Lecours et al., 2017).

Variables showing significant correlations (P ≤ 0.05; r > 0.7) were

removed and ‘vif_func’, from the FSMB package, was implemented in

RSTUDIO 3.4.3 to stepwise identify and remove variables with variance

inflation factor (VIF) > 3, in order to reduce the risk of type-II errors

(Zuur, Ieno & Elphick, 2010).

The final nine predictors were viewed as pairs plots (Figure 2) to

examine any persistent relationships between variables and 1,000

randomly generated points (Stirling et al., 2016). Significant

correlations of greater than 0.7 between predictors were considered

unacceptable for MAXENT inclusion. Here, minimal correlations were

seen, with the strongest relationship (r = 0.66) found between the

variables of eastern-ness and sea surface temperature (SST) and

relative deviation from the mean value (RDMV, a measure of

topographic position that indicates peaks and pits). As such, all nine

variables were appropriate for model inclusion.

Variables selected for inclusion in the final model thus comprised

bathymetry, maximum diffuse attenuation (DAmax), minimum diffuse

attenuation (DAmin), RDMV, eastern-ness, northern-ness, SST, sea

surface salinity (SSS), and substrate (Table 1).

2.4 | Bias file

To account for spatially biased sampling efforts within the data, a

biased prior method was used (Phillips et al., 2009). Here, a

weighted sampling probability raster layer was created in ARCGIS,

using dive site locations provided by participating dive centres, and

converted into a kernel density raster (see Figure 3c). This was

rescaled from 1 to 20, as recommended by Elith, Kearney &

Phillips (2010), before use within the ‘biasfile’ field of MAXENT.

Comparable spatial extents, showing examples of biased and

bias-corrected habitat suitability maps, were then produced

(Figure 3a and b).

2.5 | Model selection and settings

MAXENT was identified as appropriate for use in this study as a

presence-only model, with additional benefits including high accuracy

F IGURE 2 Pairs plots of variables used within models. Pairs plots illustrating residual relationships between 1,000 randomly generated points
and predictor variables. Spearman’s rank correlation coefficients are displayed alongside the respective significance values (*P ≤ 0.05, **P ≤ 0.01,
***P ≤ 0.001) and histograms demonstrate the variability amongst explanatory variables and random points
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and effectiveness for rare species with small sample sizes (Virgili

et al., 2018), and its overall performance was considered at least as

good as, and often better than, alternative modelling techniques,

without overfitting (Hernandez et al., 2006; Williams et al., 2009;

Aguirre-Gutiérrez et al., 2013).

Model settings, implemented in MAXENT 3.4.1 (Phillips

et al., 2017), comprised 10,000 points, 500 iterations, a convergence

threshold of 10�5, a regularization value of 1, and 25% test to 75%

training data with random seed. Logistic output was employed,

producing suitability values between 0 and 1, representing least

suitable to most suitable, respectively (Elith et al., 2011). Results

were taken from a model average of 100 bootstrap replications,

ensuring the efficient use of small data sets but allowing the

partitioning of data for model testing (Phillips, Anderson &

Schapire, 2006; Elith et al., 2011; Merow, Smith & Silander, 2013).

Outputs were considered to show unsuitable areas (where logistic

outputs are between 0 and 0.25), low suitability (0.25–0.50),

moderate suitability (0.50–0.75), and high suitability (0.75–1.00), as

suggested by Shrestha & Bawa (2014).

2.6 | Assessing predictive performance

As measures of model performance, the area under the curve (AUC)

of the receiver operating characteristic (ROC) was used in addition to

the true skill statistic (TSS) (Table 2). Here, AUC values closer

to 1 were considered good, with values of 0.5 considered no better

than random with regards to their predictive power. TSS values range

from �1 to 1, where evaluation values of >0.4 were considered

indicative of useful predictions (Eskildsen et al., 2013). Unlike AUC,

TSS is threshold dependent: here, the 10-percentile training presence

logistic threshold was used to calculate TSS.

F IGURE 3 Comparison of model outputs before and after sampling bias correction. Example of the differences in habitat suitability model
(HSM) outputs before and after correction using the bias file. Here, the northernmost point of Lanzarote and La Graciosa are displayed, and the
winter male model is used as an example: (a) model output without the use of a bias file; (b) bias file incorporated in model fitting. (c) Bias file used
within maxent (scaled 1–20) for all models in this study, alongside the dive sites used to create it. Outputs were considered to show unsuitable
areas (where logistic outputs are between 0 and 0.25), low suitability (0.25–0.5), moderate suitability (0.5–0.75), and high suitability (0.75–1.0).
Coordinate system: WGS84
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3 | RESULTS

3.1 | Variable importance

Bathymetry was considered the best individual variable indicator of

habitat suitability requirements for both sexes, particularly in autumn

and winter, with comparable contributions to the models overall

(23.35% for females; 29.33% for males). Eastern-ness demonstrated

secondary importance to male and female models overall (20.10 and

19.35%, respectively), indicating some dependency on aspect.

Substrate also proved important to females during the spring and

summer (19.80 and 21.50%, respectively), with an average of 12.83%

throughout the year. Substrate was more important for males in

winter and spring (16.30 and 24.00%, respectively), with 12.58%

overall importance. Salinity was considered highly important to

females in the spring (50.20%), but less so overall (14.70%), whereas

temperature achieved its highest contribution in summer models for

both sexes (25.90% for females; 12.10% for males).

Least significant for female models were the variables DAmax

(1.38%), RDMV (4.80%), and DAmin (6.65%). Meanwhile, of minimum

importance to males were SSS (2.93%), DAmax (3.80%), and RDMV

(4.53%), all of which contributed an average of less than 7% each

(Tables 3 and 4).

The marginal response curves for all averaged replicate models

are presented in Figure S1.

3.2 | Habitat suitability

Overall seasonal habitat suitability maps at depths ≤50 m showed

highest suitability for females in winter (0.06%) and spring (0.35%),

and for males in winter (0.13%). Greatest areas of unsuitable habitat

were seen in summer and autumn for females (99.14 and 99.48%,

respectively) and males (99.92 and 98.88%, respectively), suggesting a

general move away from coastal areas during the warmer months of

the year (Figures 4, 5, and 6; Table 5).

For female models, highly suitable habitats accounted for

between 0.01 and 0.35% of the study area, representing between

0.14 and 4.98 km2. Of the areas considered highly or moderately

suitable, the majority were focused along the easternmost islands of

Fuerteventura, Lanzarote, and La Graciosa. However, this differed

seasonally, with a greater suitability for females during winter shown

along the eastern and southern coasts of Fuerteventura (Figure 5a),

and Lanzarote and La Graciosa (Figure 6a), with only small areas of

suitability in Gran Canaria in winter (Figure 4a). Areas of moderate to

high suitability were much larger in spring models for Fuerteventura

(Figure 5b), and Lanzarote and La Graciosa (Figure 6b). Minimal

suitability was seen for females in the summer and autumn models

(Figure 5c and d, respectively).

Areas showing high suitability for males comprised 1.85 km2 of

the study area in winter, and 0.43 km2 in both summer and autumn.

As with the female models, male habitat suitability was concentrated

around the islands of Fuerteventura (Figure 5e), and Lanzarote and La

Graciosa (Figure 6e) during winter. In spring there were larger areas of

habitat suitability in Fuerteventura (Figure 5f), and Lanzarote and La

Graciosa (Figure 6f), and also in Gran Canaria (Figure 4f). Suitable

TABLE 3 Variable contributions to

each female MAXENT model
Variable Winter Spring Summer Autumn Average

Bathymetry 20.80 13.80 5.40 53.40 23.35

DAmax 0.80 0.50 3.30 0.90 1.38

DAmin 5.10 9.60 10.70 1.20 6.65

Eastern-ness 41.30 2.20 24.80 9.10 19.35

Northern-ness 16.30 2.20 3.70 18.10 10.08

RDMV 5.30 1.60 1.10 11.20 4.80

SSS range 2.60 50.20 3.60 2.40 14.70

Mean average SST 1.00 0.20 25.90 0.60 6.90

Substrate 6.80 19.80 21.50 3.20 12.83

Note: Percentage contribution of variables to each of the four female MAXENT models for the angelshark

(Squatina squatina) in the Canary Islands, including average values across the four models combined.

Contributions ≥10% are shown in bold.

Abbreviations: DAmax, diffuse attenuation maximum; DAmin, diffuse attenuation minimum; RDMV,

relative deviation from the mean; SSS, sea surface salinity; SST, sea surface temperature.

TABLE 2 MAXENT model evaluation metrics

AUC (±SD) TSS (±SD)

Female Winter 0.989 (±0.005) 0.715 (±0.165)

Spring 0.942 (±0.021) 0.548 (±0.310)

Summer 0.996 (±0.004) 0.832 (±0.366)

Autumn 0.995 (±0.007) 0.840 (±0.188)

Male Winter 0.960 (±0.019) 0.612 (±0.206)

Spring 0.962 (±0.021) 0.344 (±0.461)

Summer 1.000 (±0.00) 0.000 (±0.000)

Autumn 0.996 (±0.006) 0.777 (±0.196)

Note: Averaged values, with standard deviation (SD), for area under curve

(AUC) and true skill statistic (TSS) of 100 MAXENT replicate runs for the

angelshark (Squatina squatina) in the Canary Islands. TSS was calculated

using respective 10-percentile training presence logistic thresholds.
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areas were reduced in summer across the region, and only minimal

areas of suitability were seen on the mid-southern coast of Lanzarote

in autumn (Figure 6h).

3.3 | Occurrences by month

Averaged variances in adult angelshark sightings by month across five

incomplete years (from March 2014 to August 2018, inclusive) are

displayed in Figure 7. Most sightings occurred in the late autumn and

winter, with January alone averaging 41 adult occurrences (male,

female, and unknown) per month within the modelled area. December

and February followed closely, with an average of 34 and 32.25 adult

occurrences per month, respectively. Sightings of angelshark were

lowest in September each year, when only three adults were recorded

on average, with none of those identified as male. Males were most

often reported in November (14.5 on average), whereas females were

seen most often in January (22 on average), suggesting a temporal

asynchrony of the sexes in their use of coastal locations. Over the

incomplete 5-year period, adult sex ratios were inclined towards

females, with 408 females recorded, whereas only 243 males were

registered in the same time frame.

In response to a diver effort questionnaire distributed

to dive centres across the archipelago, 34 responses were

F IGURE 4 Seasonal habitat suitability models for Gran Canaria. Seasonal habitat suitability maps for comparison of adult male and female
angelshark (Squatina squatina) models, showing Gran Canaria: (a) female winter (n = 215); (b) female spring (n= 88); (c) female summer (n = 50);
(d) female autumn (n = 55); (e) male winter (n = 126); (f) male spring (n = 34); (g) male summer (n = 13); (h) male autumn (n = 70). Outputs were
considered to show unsuitable areas (where logistic outputs are between 0 and 0.25), low suitability (0.25–0.5), moderate suitability (0.5–0.75),
and high suitability (0.75–1.0). Coordinate system: WGS84

TABLE 4 Variable contributions to
each male MAXENT model

Variable Winter Spring Summer Autumn Average

Bathymetry 44.30 15.40 1.00 56.60 29.33

DAmax 1.80 12.70 0.00 0.70 3.80

DAmin 11.20 0.30 21.10 5.50 9.53

Eastern-ness 11.80 31.50 26.90 10.20 20.10

Northern-ness 2.40 4.60 30.10 11.80 12.23

RDMV 4.80 4.60 5.00 3.70 4.53

SSS range 6.30 2.20 1.10 2.10 2.93

Mean average SST 1.10 4.80 12.10 2.10 5.03

Substrate 16.30 24.00 2.60 7.40 12.58

Note: Percentage contribution of variables to each of the four male MAXENT models for the angelshark

(Squatina squatina) in the Canary Islands, including average values across the four models combined.

Contributions ≥10% are shown in bold.

Abbreviations: DAmax, diffuse attenuation maximum; DAmin, diffuse attenuation minimum; RDMV,

relative deviation from the mean; SSS, sea surface salinity; SST, sea surface temperature.
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F IGURE 5 Seasonal habitat suitability models for Fuerteventura. Seasonal habitat suitability maps for comparison of adult male and female
angelshark (Squatina squatina) models, showing Fuerteventura: (a) female winter (n = 215); (b) female spring (n = 88); (c) female summer (n = 50);
(d) female autumn (n = 55); (e) male winter (n = 126); (f) male spring (n = 34); (g) male summer (n = 13); (h) male autumn (n = 70). Outputs were
considered to show unsuitable areas (where logistic outputs are between 0 and 0.25), low suitability (0.25–0.5), moderate suitability (0.5–0.75),
and high suitability (0.75–1.0). Coordinate system: WGS84

F IGURE 6 Seasonal habitat suitability models for Lanzarote and La Graciosa. Seasonal habitat suitability maps for comparison of adult male
and female angelshark (Squatina squatina) models, showing Lanzarote and La Graciosa: (a) female winter (n = 215); (b) female spring (n = 88); (c)
female summer (n = 50); (d) female autumn (n = 55); (e) male winter (n = 126); (f) male spring (n = 34); (g) male summer (n = 13); (h) male autumn
(n = 70). Outputs were considered to show unsuitable areas (where logistic outputs are between 0 and 0.25), low suitability (0.25–0.5), moderate
suitability (0.5–0.75), and high suitability (0.75–1.0). Coordinate system: WGS84
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received. Dive hours averaged 817 per centre, per year, with

a standard error of 80.47. As dive centre staff are thought to

have provided most of the occurrence data, a measure of diver effort

was estimated by multiplying average dive hours (817) by the number

of active dive centres (78 PADI-registered centres in the Canary

Islands at time of writing; PADI, 2019). This produced an estimated

contribution of dive hours of 63,726 per year.

3.4 | Bias file comparisons

The use of a bias file within MAXENT showed some difference between

HSMs using biased data and HSMs using bias-corrected data

(Figure 3a and b). Notably, HSMs using a bias file during model fitting

produced slightly higher suitability throughout the archipelago,

whereas uncorrected models produced decreased areas of suitability

(Table S3).

4 | DISCUSSION

Habitat suitability models (HSMs) play a critical role in both spatial

ecology research and conservation planning, with citizen science

initiatives able to contribute considerable data where traditional

science-led sampling of rare or cryptic species is difficult or resource

heavy. Despite well-documented sampling biases in citizen science

TABLE 5 Percentage of habitat suitability levels for each MAXENT model

High suitability (%) Moderate suitability (%) Low suitability (%) Unsuitable (%)

Female Winter 0.06 1.13 6.77 92.04

Spring 0.35 3.14 16.41 80.09

Summer 0.01 0.05 0.80 99.14

Autumn 0.02 0.08 0.42 99.48

Male Winter 0.13 1.23 5.86 92.78

Spring 0.00 2.97 25.65 71.38

Summer 0.03 0.02 0.02 99.92

Autumn 0.03 0.24 0.85 98.88

Note: Percentage of habitat suitability levels of the total study area for the angelshark (Squatina squatina) in the Canary Islands, where logistic outputs of

0.75–1.0 = high suitability, 0.5–0.75 = moderate suitability, 0.25–0.5 = low suitability, and 0–0.25 = unsuitable areas.

F IGURE 7 Angelshark
occurrences with diver effort.
Average sex-differentiated
occurrences of angelshark
(Squatina squatina) in the Canary
Islands between March 2014 and
August 2018, separated by
month. The monthly average dive
effort (dives per month) is also
included (2016–2018)
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data, few HSM studies have attempted to mitigate these issues,

resulting in unidentified over- or under-prediction in specific areas

(Kramer-Schadt et al., 2013). This study explicitly accounts for spatial

biases, thereby enhancing model performance and improving the

efficacy of species conservation planning by comparing results for

biased and bias-controlled HSMs.

The models showed variable habitat suitability for S. squatina

between seasons and by sex, with the highest suitability prevalent in

the eastern half of the Canary Island archipelago, largely in the north-

east regions of Fuerteventura, Lanzarote, and La Graciosa.

Notwithstanding minimal changes in sampling effort, bathymetry was

validated as being of high importance to the angelshark, with the

greatest unsuitable areas found in summer and autumn at depths of

≤50 m. This suggests that angelsharks move away from shallow

waters during the warmer months, corroborating anecdotal evidence

from dive centres and explaining the importance of SST as a predictor

in summer models. Although pupping is suspected to take place year-

round, increased female habitat suitability in spring may coincide with

a peak in pupping between April and July (Meyers et al., 2017;

Jiménez-Alvarado et al., 2020). The absence of angelsharks from

shallow waters in summer months may be explained by their

nocturnal behaviour, alongside possible diel vertical migrations. With

the Canary Islands thought to be the southernmost tip of the

angelshark range, and thus likely to represent the thermal limit of the

species, the availability of deeper, cooler waters surrounding

the volcanic archipelago may serve to assist thermoregulation during

warmer periods. A number of demersal elasmobranchs have shown

such behaviours, moving to deeper waters during the day and only

becoming more active in shallow waters during the night (Humphries,

Simpson & Sims, 2017; Coffey et al., 2020; DeGroot et al., 2020).

Although this may explain a lack of detection by divers during daylight

hours, it highlights a need for more focused night surveys and greater

efforts to sample at depths beyond the recreational dive limits to

confirm this. This may involve using methods such as telemetry or

fisheries data to ascertain individual movements or occurrence along

depth gradients.

As a prominent predictor for both sexes, bathymetry may also be

related to reproductive strategy, with results largely supporting prior

research on elasmobranchs (Byrkjedal & Høines, 2007; Vaz

et al., 2007; Vögler, Milessi & Quiñones, 2008; Sequeira et al., 2014;

Meyers et al., 2017). This may explain the greater overall suitability

for both sexes in winter, with the mating season thought to occur

during the cooler months (Meyers et al., 2017). Given more sex-

specific occurrence data, the identification of movement patterns and

habitat association at a higher temporal resolution (e.g. monthly) is

required to develop more detailed conservation and managements

strategies (Dingle, 1996; Speed et al., 2012).

Areas of southern and eastern aspect generally demonstrated

greater suitability, probably acting as a proxy for more sheltered

habitats away from the open Atlantic and the dominant wind

direction experienced in the Canary Islands. As ambush predators,

angelsharks rely on fine substrate to bury into for camouflage; as

such, the overall low influence of the substrate variable was

unexpected. However, substrate remains one of the most influential

variables for females during spring (19.80%) and summer (21.5%),

when areas consisting of mud to muddy sand and sea grass beds were

preferred. As these coincide with the suggested peak in pupping

(Meyers et al., 2017), areas of fine substrate and seagrass may be

sought by females as nursery areas to provide the most suitable

habitats for offspring to remain hidden, thus enhancing juvenile

survival.

Given such findings, it is possible to focus resources by

initiating a habitat-based conservation framework, identifying areas

of highly suitable habitat to enable spatial protection at locations

critical for species persistence. For instance, by limiting exploitative

activities in shallow, fine substrate areas during the pupping

season, disturbances to gravid/birthing females and neonates would

be avoided. With species distribution a key factor in the

assessment of conservation status (Crees et al., 2016; Akçakaya

et al., 2018), sex-partitioned models also minimize the

overestimation of the angelshark range by identifying overlaps and

allowing for more accurate evaluations of spread. Moreover, with

the expansion of tagging initiatives in the archipelago, models also

provide a starting point from which long-term movement studies

may benefit.

Responses from the diver effort questionnaire (n = 34) emphasize

the temporal biases of occurrence data collection, where sampling is

largely restricted to the hours between 9:00 AM and 5:00 PM, with

most sightings correspondingly logged between 9:00 AM and 2:00 PM.

Despite the nocturnal tendencies of the angelshark

(Tonachella, 2010), only two of the 34 diver effort questionnaire

respondents indicated that night dives were undertaken by their

centre, notwithstanding the likely sedentary state of angelsharks

during daylight hours. Accordingly, increasing night dives and

implementing telemetry studies are recommended to provide further

insight into the activity estimates for the species. As a rare species,

but with a significant presence in the Canary Islands, angelshark

sightings may be desirable on scuba excursions, and thus it is

appropriate to note that the relative effort may be increased on dives

specifically targeting S. squatina.

A common problem in marine modelling (and particularly in

coastal areas) is the low availability, or resolution, of sea-bed

predictor layers (e.g. DAmax and DAmin; 5 arcminutes) when

compared with values at the sea surface (e.g. SSS and SST;

30 arcseconds). The necessity for predictors of equal spatial

resolution and extent in MAXENT further exacerbates this issue by

requiring the grain size to be artificially reduced or increased. This

requires the additional processing of predictor layers, potentially

deviating from source data and providing reduced value to modelled

areas of suitability. It is therefore challenging for coastal researchers

to accurately identify habitats using subsurface layers alone, and

hence a combination of sea surface and benthic layers was

employed within the final models of this study. Thus, to create a

model that is truly inclusive of variables pertinent to coastal species,

complete sets of both benthic and sea surface variables at higher

starting resolutions is required.
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Alongside citizen-contributed occurrence data, many records

used in this study included environmental information relating to the

sighting, e.g. depth, habitat (e.g. rock, sand, or seagrass), and water

temperature. When compared with predictor layer values at

corresponding occurrence points, the data were rarely consistent,

reiterating that a cautionary approach is required for both unvalidated

sightings data and coarse-resolution environmental layers. For

example, of 613 adult records where habitat type was provided by

citizen scientists, only 74 (12.07%) agreed with the corresponding

points within the substrate predictor layer. As a broad, modelled

prediction of habitat cover, the European Marine Observation and

Data Network (EMODnet) is likely to contain inaccuracies, yet no

comparable habitat data exist with a spatial coverage incorporating

the Canary Islands. Thus, given the paucity of environmental data

specific to the study area, an important aim for future studies would

be the development of high-accuracy benthic habitat layers for the

archipelago.

In addition, the average depth discrepancy between citizen

science records and predictor layer values was 7.59 m (SD ± 6.55 m).

Given that the greatest tidal amplitude in the Canary Islands stands at

84.23 cm (at Arrecife, Lanzarote; G�omez et al., 2015), the larger

discrepancies may relate to either coarser resolutions or a lack of

spatial specificity and accuracy in citizen science data entry. Although

HSMs are capable of coping with minor location errors (Kramer-

Schadt et al., 2013), efforts to lessen common inaccuracies are

recommended via additional training (Aceves-Bueno et al., 2017) and

by increasing detail in the maps widely employed to collect spatial

data from citizen scientists. For example, the addition of bathymetric

contour lines to maps used for data collection in this study would

have mitigated the numerous occurrences lost through being logged

at depths beyond recreational dive limits. Such recommendations are

very relevant, with applications extending throughout ecological

systems, via the inclusion of attributes such as altitude, visual

landmarks, human settlements, and grid systems to contextualize

maps for citizen scientists during data entry, thereby improving data

quality and negating the need for expensive and time-consuming

data validation.

As a presence-only model MAXENT recognizes that absence data,

particularly in citizen science studies, is rarely available or reliable,

thereby creating opportunities to use sparse, irregularly sampled data

(Kramer-Schadt et al., 2013). The lack of absence data means that

estimating species prevalence is not possible (Phillips & Elith, 2013),

yet even if a presence–absence model was viable it might not provide

meaningful estimates for such cryptic and mobile species. With

angelsharks considered as such, prevalence is difficult to ascertain and

unreliable data remain a major limitation (Mengersen et al., 2017),

particularly with the challenges of estimating underwater locations. To

account for this, the use of occupancy models, although often difficult

to fit, would counteract the impacts of imperfect detection in the

modelling of cryptic species (Welsh, Lindenmayer & Donnelly, 2013).

Misidentification can impact suitability models, with citizen

scientists more prone to such errors (McClintock et al., 2010; Sillero

et al., 2014). Yet, despite their cryptic nature, misidentification is

unlikely to be significant in this study because the angelshark is a

flagship species for the Canary Island diving community. The

misidentification of sex, however, may be likely in less experienced

divers or when an angelshark is deeply buried in sediment. For

instance, male claspers may be confused with pelvic fins or be less

visible in immature males. This may cause an apparent increase in

female sightings, but this is less likely for the mature individuals

modelled in this study and given that many occurrences were

reported by seasoned dive centre staff.

Spatial filtering of occurrence points is the preferred method to

achieve model consistency in the face of sampling bias; however, with

an insufficient sample size for seasonal, sex-segregated subsets, a bias

kernel density file was created for use in this study (Kramer-Schadt

et al., 2013). Representative of trends across the models in this study,

comparative panels within Figure 3 illustrate slightly more generous

predictions when sampling bias is accounted for in this scenario (for a

comparison of logistic model outputs, see Table S3). As a potentially

widespread effect when bias files are not used, the possible

implications of under-prediction are broad and should be considered

during the interpretation of HSMs, during subsequent sampling

endeavours, and in future proposals of conservation action, to

maintain the efficient use of research time and funding.

The identification of seasonally varied, sex-differentiated habitat

suitability for angelsharks in the Canary Islands provides the evidence

base for the protection of key habitats across the archipelago.

Following protection through the Spanish endangered species list, the

government is mandated to develop a recovery plan that identifies

critical and sensitive areas for the species. Model outputs from this

project will be fed into the recovery plan process to identify these

important sites. For example, models highlight areas around southern

Lanzarote and Fuerteventura as being particularly important to

females during the spring (Figures 5b and 6b). Moreover, with several

of these moderate–high suitability areas identified where no

occurrences or dive sites have been recorded (e.g. mid–southern

Lanzarote; Figure 6), targeted surveys may be able to confirm the

presence of angelsharks at these sites and advance spatial protections

in locations not yet considered.

The accidental capture of angelsharks in fisheries could be further

minimized if the model outputs were overlaid with fishing effort to

ascertain possible ‘high risk’ areas for angelsharks. Focused

engagement with government authorities, commercial fishers, and

recreational fishers to gather fishing effort data will benefit the

development of the recovery plan. For example, seasonal restrictions

of fishing gear most likely to encounter angelsharks, e.g. bottom set

gear, at these high-risk sites in winter and spring could protect

angelsharks, with minimal impact on recreational and commercial

fisheries. Moreover, by shielding angelsharks through spatial or

seasonal measures, and raising their profile outside of the country, a

continued resource for ecotourism could be provided, creating a

mutually beneficial and enduring relationship between Canary Island

communities, visitors, and the angelshark. A code of conduct for

diving with angelsharks in the Canary Islands, widely distributed

amongst the diving community, would help to ensure that there is
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minimal impact on the angelshark and safeguard the long-term

viability of diving tourism in the Canary Islands, by maximizing the

recovery of its flagship species.

Using innovative citizen science approaches, a clear and adaptive

framework for modelling cryptic and Data Deficient species is given,

providing clear comparisons of bias-corrected HSMs and clarifying the

appropriate interpretation for HSM application throughout coastal

systems.
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